Synthesis and structure of dipalladium complexes containing cyclooctatetraene and bicyclooctatrienyl ligands

Tetsuro Murahashi *, Naohiro Kato, Sensuke Ogoshi, Hideo Kurosawa
Department of Applied Chemistry, Graduate School of Engineering, Osaka University and
PRESTO, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan

Received 6 September 2007; received in revised form 2 October 2007; accepted 2 October 2007
Available online 9 October 2007

Abstract

The reaction of a substitutionally labile dipalladium(I) complex $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (1) with 1,3,5,7-cyclooctatetraene (COT) in acetonitrile afforded $\left[\mathrm{Pd}_{2}\left(\mu-\eta^{3}: \eta^{3}-\mathrm{C}_{8} \mathrm{H}_{8}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (2). The reaction of 2 with COT in acetonitrile yielded $\left[\mathrm{Pd}_{2}\left(\mu-\eta^{3}: \eta^{3}-\right.\right.$ $\left.\left.\mathrm{C}_{16} \mathrm{H}_{16}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{BF}_{4}\right]_{2}(4)$, where COT is dimerized via $\mathrm{C}-\mathrm{C}$ bond formation. Complexes 2 and $\mathbf{4}$ were structurally characterized by X-ray diffraction analyses. In dichloromethane, COT isomerized to styrene at room temperature in the presence of catalytic amount of $\mathbf{1}, \mathbf{2}$, or 4 . © 2007 Elsevier B.V. All rights reserved.

Keywords: Palladium; Cyclooctatetraene; Dinuclear complexes

1. Introduction

Coordination behavior of 1,3,5,7-cyclooctatetraene (COT) has been intensively studied, since COT shows diverse binding modes to mono-, di-, and trinuclear metal moieties. In organopalladium chemistry, coordination of COT to $\mathrm{Pd}^{\mathrm{II}}$ or Pd^{0} has been well characterized (Scheme 1) $[1-4]$. The COT ligand in a "tub" conformation binds a mononuclear $\mathrm{Pd}^{\mathrm{II}}$ center through a bidentate manner (Scheme 1, A). On the other hand, it is known that the COT ligand in a nearly planar conformation coordinates to $\mathrm{Pd}^{0} \mathrm{~L}_{2}$ moieties (Scheme 1, B and C). The coordination behavior of COT to a Pd-Pd bonded moiety has also been examined in our group. Recently, we reported that the COT ligand coordinates to a triangular tripalladium core (Scheme 1, D) or a rhombic tetrapalladium core in face-capping manners [5,6]. Thus, COT acts as the ligand for the metal sheet sandwich complexes [7]. Herein, we wish to report that the dinuclear addition of a $\left[\mathrm{Pd}_{2} \mathrm{~L}_{n}\right]^{2+}$ moiety

[^0]to COT (1 equiv.) takes place to yield a $\mu-\eta^{3}: \eta^{3}$-COT half-sandwich complex $\left[\mathrm{Pd}_{2}\left(\mu-\eta^{3}: \eta^{3}-\mathrm{C}_{8} \mathrm{H}_{8}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]$ -
$\left[\mathrm{BF}_{4}\right]_{2}$ (2). Complex 2 reacts with COT to give the bicyclooctatrienyl dipalladium complex $\quad\left[\operatorname{Pd}_{2}\left(\mu-\eta^{3}: \eta^{3}-\right.\right.$ $\left.\left.\mathrm{C}_{16} \mathrm{H}_{16}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{BF}_{4}\right]_{2}(4)$.

2. Results and discussion

The reaction of a homoleptic acetonitrile dipalladium(I) complex $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (1) [8] with COT (1 equiv.) in acetonitrile afforded $\left[\mathrm{Pd}_{2}\left(\mu-\eta^{3}: \eta^{3}-\mathrm{C}_{8} \mathrm{H}_{8}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]$ $\left[\mathrm{BF}_{4}\right]_{2}(\mathbf{2})$ in 92% isolated yield as a mixture of two isomers (isomer ratio $=72 / 28$) (Eq. (1)). ${ }^{1} \mathrm{H}$ NMR spectra of each isomer of 2 in acetone $-d_{6}$ at $-90^{\circ} \mathrm{C}$ showed eight resonances for the COT protons. Upon warming the sample, all of the signals broadened, and at $25^{\circ} \mathrm{C}$, one very broad signal was observed at $\delta=5.5 \mathrm{ppm}$.

A single crystal of $\mathbf{2}$ suitable to X-ray diffraction analysis was obtained by recrystallization from $\mathrm{CH}_{3} \mathrm{CN} /$ toluene. The molecular structure of 2 was shown in Fig. 1. Two Pd atoms are bound to the same face of the COT ligand. The distance between two Pd atoms ($3.57 \AA$) is out of the range of normal $\mathrm{Pd}-\mathrm{Pd}$ bonds. The coordination mode of

A

B

C

D
Scheme 1.
the COT ligand is the bi- η^{3}-allyl mode, while the structure is C_{1} symmetric (Figs. 1 and 2), being consistent with the ${ }^{1} \mathrm{H}$ NMR signal pattern observed at $-90^{\circ} \mathrm{C}$. It was previously reported that the related bi- η^{3}-allyl complex $\left[\left(\mu-\eta^{3}: \eta^{3}-\mathrm{RCH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CHR}\right) \mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]-$
$\left[\mathrm{BF}_{4}\right]_{2}(3, \mathrm{R}=\mathrm{Ph}$ or $t-\mathrm{Bu})$ is formed by the reaction of complex 1 and 1,6-disubstituted 1,3,5-trienes, where two η^{3}-allyl moieties are chemically equivalent with each other according to the NMR analyses as well as the X-ray structure analyses [9-11]. The unsymmetrical bi- η^{3}-allyl structure in complex 2 is probably due to the close proximity of the two $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ moieties. It should be mentioned that the C_{8} ring of the COT ligand in $\mathbf{2}$ creases at $\mathrm{C} 2 \cdots \mathrm{C} 5$ (Fig. 2), although the COT ligand in 2 may be attributable to the COT^{2-} ligand. Furthermore, there is the bond length alternation at the uncoordinated region (C6-C7-C8-C1) (1.47(1) $\AA / 1.33(1) \AA / 1.48(1) \AA)$. These suggest the electronic delocalization over the C_{8} ring of the COT^{2-} ligand is not so large. The structure of another isomer is elusive at

Fig. 1. ORTEP drawing of $\left[\left(\mu-\eta^{3}: \eta^{3}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (2) $(50 \%$ probability ellipsoids, BF_{4}^{-}anions were omitted for clarity). Selected bond lengths (A): Pd1-C1 2.162(9), Pd1-C2 2.109(8), Pd1-C3 2.132(8), Pd2-C4 2.148(8), Pd2-C5 2.106(8), Pd2-C6 2.155(8), Pd1-N1 2.102(7), Pd1-N2 2.116(8), Pd2-N3 2.073(8), Pd2-N4 2.120(7), C1-C2 1.41(1), C2-C3 1.43(1), C3-C4, 1.48 (1), C4-C5 1.43(1), C5-C6 1.41(1), C6-C7 1.47(1), C7-C8 1.33(1), C8-C1 1.48(1).
this stage. Since complex 3 was formed from 1 and trienes as a mixture of syn- and anti-dinuclear addition products [10], a possible structure of another isomer of 2 is the anti-adduct, in which each Pd atom is bound to an opposite face of the C_{8} ring.

When complex 2 was treated with COT (excess) in $\mathrm{CD}_{3} \mathrm{CN}$, the bicyclooctatrienyl complex 4 was formed almost quantitatively in the NMR monitoring experiment (Eq. (2)). Complex 4 was isolated in 65% yield after recrystallization from $\mathrm{CH}_{3} \mathrm{CN}$ /toluene. A single crystal suitable to the X-ray diffraction analysis was obtained by recrystallization from $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$. The molecular structure of $\mathbf{4}$ is shown in Fig. 3. In complex 4, COT was dimerized via the formation of $\mathrm{C} 6-\mathrm{C}^{\prime}$ bond, and each cyclooctatrienyl ring coordinates to a palladium moiety in a η^{3}-coordination mode. The relative position of the η^{3}-coordinated $\left[\mathrm{PdL}_{2}\right]$ moiety and the $-\mathrm{C}_{8} \mathrm{H}_{8}\left[\mathrm{PdL}_{2}\right]$ substituent with respect to a cyclooctatrienyl ring is syn. This is reasonably understood by the syn-insertion of an olefin part of the COT to the $\mathrm{Pd}-\mathrm{C}-\sigma$-bond of the σ-allyl complex which may be formed by allyl $\pi-\sigma$ transformation of one of the η^{3}-allyl palladium moieties of 2. Several bicyclooctatrienyl transition metal complexes are known to be prepared from COT [12-14].

Fig. 2. Bottom and side views of complex 2.

Fig. 3. ORTEP drawing of $\left[\left(\mu-\eta^{3}: \eta^{3}-\mathrm{C}_{16} \mathrm{H}_{16}\right) \mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (4) (50% probability ellipsoids, BF_{4}^{-}anions were omitted for clarity). Selected bond lengths (\AA): Pd1-C1 2.12(2), Pd1-C2 2.12(2), Pd1-C3 2.15(2), Pd1N1 2.11(1), Pd1-N2 2.09(2), C1-C2 1.40(3), C2-C3 1.42(3), C3-C4 $1.45(3), \mathrm{C} 4-\mathrm{C} 51.35(2), \mathrm{C} 5-\mathrm{C} 61.55(2), \mathrm{C} 6-\mathrm{C}^{\prime} 1.54(3)$.

When the reaction of $\mathbf{1}$ with COT was carried out in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, the formation of $\mathbf{2}$ or $\mathbf{3}$ was not observed. Instead, gradual isomerization of COT to styrene proceeded at room temperature. The isomerization was catalyzed by $10 \mathrm{~mol} \%$ of $\mathbf{1}(84 \%$ after 144 h$), \mathbf{2}(87 \%$ after 120 h$)$, or even $\mathbf{4}(75 \%$ after 80 h), while mononuclear cationic η^{3}-allyl palladium complex $\quad\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$, mononuclear dicationic complex $\left[\operatorname{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{BF}_{4}\right]_{2}$, and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ did not catalyze the isomerization from COT to styrene in the same condition. It is known that isomerization of COT to styrene proceeds at high temperature [15]. Furthermore, Cope and Burg reported isomerization of halocyclooctatetraene to 2-halostyrene at $100^{\circ} \mathrm{C}$ in high yield [16], where bicyclo[4.2.0]octatriene (A) is the intermediate [17-

19]. In the reaction shown in Eq. (3), bicyclo[4.2.0]octatriene (A) is presumably formed by a catalytic action of a dipalladium species. A possible catalytic cycle is shown in Fig. 4. 1,2-Dipalladated cyclooctatriene (B) may be tautomerized with the bicyclo[4.2.0]octadiene (C) from which the transolefination [10] and Pd-promoted 1,3-hydrogen shift [20] may afford the bicyclo[4.2.0]octatriene (A).

In summary, it has been proven that a dinuclear addition of a $\left[\mathrm{Pd}_{2} \mathrm{~L}_{n}\right]^{2+}$ moiety to COT proceeds in acetonitrile to afford the $\mu-\eta^{3}: \eta^{3}$-COT dipalladium(II) complex. In the presence of excess COT, $\mu-\eta^{3}: \eta^{3}-\mathrm{C}_{16} \mathrm{H}_{16}$ dipalladium(II) complex is eventually formed. In dichloromethane, the dipalladium complexes catalyze the isomerization of COT to styrene at room temperature.

Fig. 4. A possible cycle for the isomerization of COT to styrene at room temperature.

3. Experimental

3.1. General consideration

All manipulations were conducted under a nitrogen atmosphere using standard Schlenk or drybox techniques. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance spectra were recorded on JEOL GSX-270S and JEOL AL-400 spectrometers. Elemental analyses were performed at the Analytical Center, Faculty of Engineering, Osaka University. X-ray crystal data were collected by Rigaku RAXISRAPID Imaging Plate diffractometer. All solvents used in this work were distilled prior to use. Toluene was distilled from sodium benzophenone ketyl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, and $\mathrm{CD}_{3} \mathrm{CN}$ from CaH_{2}. All commercially available reagents were distilled and degassed prior to use.

3.2. Synthesis of $\left[P d_{2}\left(\mu-\eta^{3}: \eta^{3}-C_{8} H_{8}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[B F_{4}\right]_{2}$ (2)

To a $\mathrm{CH}_{3} \mathrm{CN}$ solution of $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (1) $(126 \mathrm{mg}, \quad 0.20 \mathrm{mmol})$ [8] was added COT $(22.0 \mathrm{mg}$, 0.21 mmol), and the mixture was stirred for 1 h at room temperature. The reaction mixture was filtered and toluene was added to the filtrate. Crystallization at $-20^{\circ} \mathrm{C}$ gave reddish orange microcrystals of $2\left(121 \mathrm{mg}, 92 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6},-90^{\circ} \mathrm{C}$) for 2. For major isomer; $\delta=6.20-5.90(\mathrm{~m}, 4 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 5.17$ (m, 1H), 3.27 (br m, 1H), 2.64 (br s, 6H), 2.45 (br s, 6H). For minor isomer; $\delta=6.25-5.85(\mathrm{~m}, 4 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H})$, 5.5 (overlap), 5.29 (m, 1H), 3.12 (br s, 1H). Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Pd}_{2}$: C, 29.35; H, 3.08; N, 8.56. Found: C, 29.10; H, 3.00; N, 8.40\%.

3.3. Synthesis of $\left[P d_{2}\left(\mu-\eta^{3}: \eta^{3}-C_{16} H_{16}\right)\left(\mathrm{CH}_{3} C N\right)_{4}\right]\left[B F_{4}\right]_{2}$ (4)

To a $\mathrm{CH}_{3} \mathrm{CN}$ solution of $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (1) $(126 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added COT ($104 \mathrm{mg}, 1.0 \mathrm{mmol}$), and the mixture was stirred for 14 h at room temperature. The reaction mixture was filtered and the benzene was added to the filtrate to give a pale yellow precipitate. Recrystallization from $\mathrm{CH}_{3} \mathrm{CN} /$ toluene at $-20^{\circ} \mathrm{C}$ gave yellow crystals of $4\left(98 \mathrm{mg}, 65 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right.$, $25^{\circ} \mathrm{C}$) for 4: $\delta=6.01\left(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right)$, $5.79 \quad\left(\mathrm{dd}, \quad J=10.5 \mathrm{~Hz}, \quad J=7.0 \mathrm{~Hz}, \quad \mathrm{H}_{\mathrm{d}}\right), \quad 5.73 \quad(\mathrm{dd}$, $\left.J=8.6 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 4.70\left(\mathrm{t}, J=8.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 2.43$ (br m, H_{e}), $2.23\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CN}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ for 4: $\delta=137.5\left(\mathrm{~s}, \mathrm{C}_{\mathrm{d}}\right), 127.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{c}}\right), 98.7\left(\mathrm{~s}, \mathrm{C}_{\mathrm{e}}\right), 79.0(\mathrm{~s}$, $\left.\mathrm{C}_{\mathrm{b}}\right), 45.2$ ($\mathrm{s}, \mathrm{C}_{\mathrm{a}}$). Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Pd}_{2}$: C, 37.98; H,3.72; N, 7.38. Found: C, 37.70; H, 3.58; N, 7.10\%.

3.4. X-ray structure analyses of $\mathbf{2}$ and $\mathbf{4}$

Crystal data for 2: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Pd}_{2}, M=654.77$, space group $P \overline{1}$ (no. 2), $a=10.1953(4) \AA, b=11.3646(4) \AA$, $\AA=$ $11.4885(7) \AA, \quad \alpha=68.468(5)^{\circ}, \quad \beta=73.328(5)^{\circ}, \quad \gamma=86.334$ $(3)^{\circ}, \quad V=1184.9(1) \AA^{3}, \quad Z=2, \quad F(000)=636, \quad D_{\text {calc }}=$ $1.835 \mathrm{~g} / \mathrm{cm}^{3}, \mu($ Mo K $\alpha)=15.91 \mathrm{~cm}^{-1}, 289$ variables refined with 4036 reflections collected at 273 K with $I>3 \sigma(I)$ to $R=0.043$.

Crystal data for 4: $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Pd}_{2}, M=758.92$, space group $P 2_{1} / n$ (no. 14), $a=6.7545(2) \AA, b=10.130$ (1) $\AA, \quad c=21.498(2) \AA, \quad \beta=97.970(4)^{\circ}, \quad V=1456.7(2) \AA^{3}$, $Z=2, \quad F(000)=748, \quad D_{\text {calc }}=1.730 \mathrm{~g} / \mathrm{cm}^{3}, \quad \mu(\mathrm{Mo} \mathrm{K} \alpha)=$ $13.08 \mathrm{~cm}^{-1}, 181$ variables refined with 1345 reflections collected at 213 K with $I>3 \sigma(I)$ to $R=0.080$.

Appendix A. Supplementary material

CCDC 662513 and 662514 contain the supplementary crystallographic data for 2 and 4. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/ j.jorganchem.2007.10.004.

References

[1] P.M. Maitlis, P. Espinet, M.J.H. Russell, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, vol. 6, Pergamon Press, New York, 1982 (Chapter 38.9).
[2] H.P. Fritz, H. Keller, Chem. Ber. 95 (1962) 158.
[3] (a) H. Frye, K. Ernest, J. Viebrock, Z. Naturforsch. B 20 (1965) 269; (b) D.J. Mabbott, B.E. Mann, P.M. Maitlis, J. Chem. Soc., Dalton Trans. (1977) 294;
(c) N.C. Baenziger, C.V. Goebel, T. Berg, J.R. Doyle, Acta Crystallogr., Sect. B 34 (1978) 1340.
[4] F. Schager, K.-J. Haack, R. Mynott, A. Rufinska, K.-R. Pörschke, Organometallics 17 (1998) 807.
[5] T. Murahashi, N. Kato, T. Uemura, H. Kurosawa, Angew. Chem., Int. Ed. 46 (2007) 3509.
[6] T. Murahashi, M. Fujimoto, Y. Kawabata, R. Inoue, S. Ogoshi, H. Kurosawa, Angew. Chem., Int. Ed. 46 (2007) 5440.
[7] T. Murahashi, M. Fujimoto, M. Oka, Y. Hashimoto, T. Uemura, Y. Tatsumi, Y. Nakao, A. Ikeda, S. Sakaki, H. Kurosawa, Science 313 (2006) 1104.
[8] T. Murahashi, T. Nagai, T. Okuno, T. Matsutani, H. Kurosawa, Chem. Commun. (2000) 1689.
[9] T. Murahashi, T. Nagai, Y. Mino, E. Mochizuki, Y. Kai, H. Kurosawa, J. Am. Chem. Soc. 123 (2001) 6927.
[10] T. Murahashi, H. Nakashima, T. Nagai, Y. Mino, T. Okuno, M.A. Jalil, H. Kurosawa, J. Am. Chem. Soc. 128 (2006) 4377.
[11] T. Murahashi, T. Nagai, H. Nakashima, S. Tomiyasu, H. Kurosawa, Chem. Lett. (2006) 754.
[12] R.P. Aggarwal, N.G. Connelly, B.J. Dunne, M. Gilbert, A.G. Orpen, J. Chem. Soc., Dalton Trans. (1991) 1.
[13] R. Goddard, S.A.R. Knox, R.F.D. Stansfield, F.G.A. Stone, M.J. Winter, P. Woodward, J. Chem. Soc., Dalton Trans. (1982) 147.
[14] R. Goddard, P. Woodward, J. Chem. Soc., Dalton Trans. (1979) 661.
[15] J. Stapersma, I.D.C. Roop, G.W. Klumpp, Tetrahedron 38 (1982) 2201.
[16] A.C. Cope, M. Burg, J. Am. Chem. Soc. 74 (1952) 168.
[17] R. Huisgen, W.E. Konz, J. Am. Chem. Soc. 92 (1970) 4102.
[18] W.E. Konz, W. Hechtl, R. Huisgen, J. Am. Chem. Soc. 92 (1970) 4104.
[19] R. Huisgen, W.E. Konz, G.E. Gream, J. Am. Chem. Soc. 92 (1970) 4105.
[20] P.M. Maitlis, P. Espinet, M.J.H. Russell, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, vol. 6, Pergamon Press, New York, 1982 (Chapter 38.7).

[^0]: * Corresponding author.

 E-mail address: tetsu@chem.eng.osaka-u.ac.jp (T. Murahashi).

